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ABSTRACT A new formulation of the uncertainty rela-
tion of position and momentum, and of energy and time, is
presented. The connection between the lifetime of excited
states and the energy width of these states, which does not
follow from the usual uncertainty relation, is shown to be a
consequence of the expression here derived.

The relation rr = 1 (h = 1) between the width r and the
lifetime r of a decaying state was derived long ago by Wig-
ner and Weisskopf (ref. 1). The main features of the deriva-
tion can be obtained in the following schematic model. The
state Ii) is coupled at time t = 0 to an infinite discrete spec-
trum of equally spaced levels In). We assume for simplicity
Es = 0 and consider the coupling matrix elements Vn =
(ilVjn) to be independent of n: V, = V. Then, taking the
limit Qf the level spacing a going to zero (In) -1| E)) subject
to the condition 27rV2/6 = y, where y is a constant, it is easi-
ly seen that

|+(t)) = ei(t)Ii) + fdE eE(t)IE) ,t>O, [1]

witht

eC(t) =e[2]/2)t(0

(1) The Mandelstam-Tamm formulation (refs. 2 and 3)
For any hermitian operator A and any state vector I|+()
one can define a "characteristic time"

TA (AA) d(A)|T." (,A)
dt

[5]

where (A) is the expectation value of A in the state 14(t))
and AA = [(A2) - (A) 2]1/2 is the corresponding uncertain-
ty. It can then be shown from the uncertainty relation be-
tween any two noncommuting operators and from the dy-
namical equation, that the following inequality holds:

- 1
TA- AH > -2A [6]

where ft is the Hamiltonian of the ,system. Note that TA is a
quantity with dimensions of time related to the instanta-
neous expectation value of the operator A.

In our problem we choose A = Ii) (i, so that (A) =
l@e(t A2 and

TA (t) = e (e 1) 1 [7]

where @(t) is the step function and

E(t) -i g e Ifi(t)eiEt dt. [3]

The line shape is given by

| 2 |Y 1 _eEt' 2 y/(2T) [4]EI = 0)I2 - 2
- ,Jit' it't E2 + (,y/2)2

which is a Lorentzian of width at half-maximum r given by
the constant y. On the other hand, Eq. 2 gives an exponen-
tial decay law for the initial state, with a lifetime r equal to
1/'y, so that rr = 1.
The usual claim is that this result is just the manifestation

of the underlying time-energy uncertainty relation. We pro-
ceed to test this claim by applying the two existing formula-
tions of the time-energy uncertainty principle to the present
case.

which is seen to go from 0 to co, thus bearing no relation to
T. The inequality [6] is satisfied at all times because AHf is
infinite, as can be seen from the fact that (AH)2 =
CI V(E A2p(E)dE = y/(2ir)SdE = Xo, being therefore unre-
lated to r.

It could be argued that a realistic V(E) would in general
decrease for distant states and Af could be finite. Neverthe-
less, (Af)2 is by definition the area under the curve
IV(EA2p(E), of which y is the central ordinate, so that AH is
not a measure of r.

(2) The Wigner formulation (ref. 4)
Starting from the projection

9"(t) = (ulw(t)) [8a]

of the state vector 14t(t)) onto an arbitrary vector Iu ), and its
Fourier transform

a,(E) = Vrfu(t)e dt [8b]

and in complete analogy with the formulation of the posi-
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t This is the mathematical limit of the situation in which the state
Ii) is populated much more rapidly than it decays.

[2]
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tion-momentum uncertainty relation, Wigner introduces the
time and energy spreads

f(t - t)21Xu(t)I2dt(At)y =()1d
f(E - E)21 C(E)12dE

(f l,(E)12dE

and

[9a]

[9b]

where X. (t) is the Fourier transform of 9G"(E). Taking Iu)
= Ii) as before, Xu (t) = 6@ (t), Eq. 2, so that

[C X S.] (t) = fei*()ei (M + t)de =-1 e< /2)1tI, [14]

which is a measure of the coherence in time of the wave
function of the initial state. Its equivalent width is given by

which satisfy the relation Att.AE > 'A, as he shows that the
lower bound on the energy spectrum precludes the equality.
Note that one is now integrating over time in contrast with
the usual expectation values in which the time is kept fixed.

Taking Iu) = 1i), we have Xu(t) = ej(t). Then Eqs. 2
and 9 yield At = l/T, which is precisely the lifetime. On the
other hand, the Fourier transform 6u(E) of Xu (t) is

(E= (E) = E+ i/2 [10]

It is important to note (see Eq. 3) that &9(E) is proportional
to limt-e.. [exp(iEt)6PE(t)], whose square coincides precisely
with the line shape. This is a general result, not restricted to
the present model.
Then from Eq. 10 we see that (AE)2 is the second moment

of a Lorentzian and is therefore infinite. This was pointed
out long ago by Fock and Krilov (refs. 5 and 6)t.
We have thus seen that neither of the existing precise for-

mulations of the time-energy uncertainty relation yields the
lifetime-width relation for a decaying state.
The Equivalent Width. The variance is not the only way

to measure the width of a distribution, and sometimes, as we
have seen in the case of a Lorentzian curve, it is totally unre-
lated. We introduce now the concept of "equivalent width"
(ref. 7), which is very familiar in electrical engineering, and
show that it can be used as the basis for the relationship be-
tween lifetime and width. The equivalent width W(f) of a
function f(u) is defined as

W(x x 9c) = 4 = 4T,'V [15]

a quantity of the order of the lifetime T. On the other hand,
Xt(E)A2 is now Ies(E A2, which in turn is proportional to
the Lorentzian line shape I (9E(t = 00)A2, as seen from Eq. 4.
Its equivalent width is given by

W(I!$ 2) = W(IeE(t = 0)12) = 2= 2 r [16]

a finite quantity of the order of the width at half-maximum
r. Substituting [15] and [16] in Theorem 12, one then ob-
tains rr = 1.

Notice that in the definition of the equivalent width [11],
the value of the function at the origin occurs in the denomi-
nator. The autocorrelation function [13] has always a posi-
tive definite maximum at t = 0 for any X. (t). The function
9G;u(E)2, which in the previous example is the Lorentzian
[4], has its maximum precisely at the origin; however, if the
energy Es of the initial state is shifted to some nonzero
value, this is no longer true and we lose the simple relation
[16] between the equivalent width and the width at half-
maximum. However, we can modify definition [11] of the
equivalent width, to express it in terms of an arbitrary value
uo of the variable

1 rf dWu (f)-=( > f(u)du. [17]

In terms of this quantity we can now write the fundamental
theorem as

[11]
WE(ICr 12).Wo (S iEot X 9CuiE'Et) - 27r

provided the integral exists and f(O) is different from zero.

Then if }(v) is the Fourier transform of f(u), it can be easily
proved that

W(f)- W(f) = 27r. [12]

This is the fundamental relation that the concept of equiva-
lent width provides. We note it is an equality as opposed to
the usual uncertainty relation.
We now apply the concept of equivalent width to Wig-

ner's energy probability distribution 156u(E)A2, Eq. 8b. The
Fourier transform of this function is given by the autocorre-
lation function§

[XU x 9su] (t)= f *(t)oCu(t + t) dt',

where Eo is arbitrary and can be taken as the resonance en-

ergy.
Finally, one might still have the reservation that the sec-

ond W in Eq. 18 applies to a function that is not necessarily
real and positive definite. Therefore its equivalent width
might not represent an appropriate measure of the physical
spread associated with the absolute value square of the func-
tion. However, one can easily show that

[19]

so that one can write the inequality

WEO(| 9CU(E)|2 .1IUX|U) > 27r,
[13]

[20]

t The divergence arises from the Lorentzian tail which is produced
by the step function in Eq. 2, i.e., the sudden population of the
state Ii). A fast but finite rate of population would modify the E-
dependence of the tails and yield a finite second moment. This
one, however, will not be in general a good measure of the width
at half-maximum.

§ This is known as the theorem of Wiener-Khinchin.

containing only absolute values, which are the measurable
quantities. The equality holds whenever X9(t) lEot is real
and positive, as in the case we treated earlier.

Summarizing, we have shown that the lifetime-width
relation is not a consequence of the two known presentations
of the time-energy uncertainty principle. On the other hand,

W(f) = [(0) | f(u)du, [18]
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wo(gc x SC) < wo(locl x ocl),
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we have seen that the quantum dynamics H = ia/at, which
motivates the Wigner formulation, yields a Fourier type
relation between the initial-state amplitude and the proba-
bility amplitude of the final-state distribution. This enables
us to use the general theorem, Eq. 12, relating the equiva-
lent widths of a function and its Fourier transform. This
relation can be taken as an alternative formulation of the
complementary character of time and energy, with the ad-
ditional feature of being an equality, in contrast with the
usual presentation of the uncertainty principle.
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